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Abstract

A compilation of experimental values of the infinite dilution partial molar Gibbs energy, enthalpy

and heat capacity of hydration, together with molar volumes in water at 298.15 K and 0.1 MPa is

presented for aliphatic non-cyclic ketones. These data, combined with the related results for

aliphatic non-cyclic hydrocarbons and monohydric alcohols, were treated in the framework of a

simple first order group additivity scheme. Numerical values of the contributions to the each of

the thermodynamic properties are obtained by the least-square procedure for the following groups:

CH3, CH2, CH, C, OH and CO.



Introduction

       Values of thermodynamic properties of organic compounds in aqueous solutions at infinite

dilution are needed for many applications in chemistry, biology, medicine, geochemistry,

chemical engineering etc. An experimental study of all the variety of organic compounds is out of

the question: there are simply too many substances to make a comprehensive study possible.

Instead, group additivity methods are used to estimate the properties of organic species in gas,

liquid and solid phases (see: Benson et al.1, Domalski and Hearing2, Frenkel et al.3). In 1981,

Cabani et al.4 presented an extensive data base of thermodynamic functions of hydration of

organic compounds at 298.15 K, and derived group contribution values for many functional

groups. Recently, we attempted an update of the data base and group contribution values for

aliphatic and monoaromatic hydrocarbons and monohydric alcohols (Plyasunov and Shock5).

Here we present the results for aliphatic non-cyclic ketones.

Data compilation

       The infinite dilution partial molar functions of hydration under consideration are the Gibbs

energy, ∆ hG
o , the enthalpy, ∆ hH

o , the heat capacity, ∆ hCpo , and volume, V2
o . The standard state

adopted for gaseous species is unit fugacity of the ideal gas at any temperature and pressure

P ⊗ = 0.1 MPa; that for aqueous species calls for unit activity of a hypothetical one molal

solutions referenced to infinite dilution at any temperature and pressure. The hydration process

refers to transfer of one mole of a solute from an ideal gas to a standard one molal solution. We

note two main reasons to work with the functions of hydration rather than with the partial molar

properties, like the Gibbs energy of formation of an aqueous compound. First, functions of

hydration typically have lower uncertainties, because they do not include the uncertainties of the



enthalpy of combustion measurements. Second, as discussed by Cabani et al.4, there is a universal

contribution to the properties of aqueous species, which is seen as the non-zero intercept of a plot

of properties for a homologous series versus molecular mass or number of groups. The nature of

this term is obvious for the thermodynamic functions of hydration, where it arises as the functions

of hydration of a material point (Pierotti6). This term can be calculated independently using the

thermophysical properties of pure water, thus reducing the dimension of the fitting task.

  The Gibbs energy of hydration at 298.15 K. Literature values of the various modifications of

Henry’s law constants and gas/water partition coefficients were recalculated to yield equilibrium

constants, Ko, for a gas dissolution reaction A(g)⇔A(aq), for which

∆ hG
o = −RT ln Ko = −RTln

aP ⊗

f
, where a and f stand for the activity and fugacity of a solute in

water, respectively.

       Results for the infinite dilution activity coefficient of a solute for the symmetrical

normalization of activities, reported as γ∞ , were converted to ∆ hG
o  values as follows (see

Plyasunov and Shock5): ∆ hG
o = −∆vapGo + RT lnγ∞ − RT ln1000 / Mw , where Mw stands for the

molecular mass of water in g⋅mol-1; ∆ vapG
o = −RT ln

ψPs

P⊗ , where Ps stands for the saturated vapor

pressure over the pure liquid/solid compound, and ψ represents the fugacity coefficient of a pure

compound, evaluated using the second virial coefficient.

       The mutual solubility data were converted to ∆ hG
o  values as follows (see Plyasunov and

Shock5): ∆ hG
o = ∆solG

o − ∆vapGo , where ∆solG
o = −RT ln

msγs

XsΛ s

, where ms and γs stand for the

molality and the molal activity coefficient (for the unsymmetrical normalization) at saturation for

an organic compound in the water-rich phase, respectively; Xs and Λs represent the mole fraction



and the mole fraction activity coefficient (for the symmetrical normalization) of the organic

compound in the coexisting organic-rich phase. The UNIQUAC model (Reid et al.7) was

employed to evaluate Λs. Values of γs were estimated using the Savage and Wood8 group

contribution scheme. In the Savage-Wood formalism, ln γ s = 2gxxms / RT , where gxx is the solute-

solute self-interaction coefficient, given by gxx = nin jGij − RTMw / 2000
i, j
� , where ni and nj

represent the number of groups i and j in two interacting molecules, and Gij stand for the excess

Gibbs energy of an i-j interaction. To characterize the ketone-ketone interactions one needs

GCH 2 −CH 2
= -34 J⋅mol-1 (Suri et al.9), GCH 2 −CO =41 J⋅mol-1 and GCO −CO =-64 J⋅mol-1 (the two later

values were evaluated from gxx for acetone (Kozak et al.10) and 2-butanone (Wong et al.11).

       The values of ∆ hG
o  obtained for ketones are presented in Table 1. Where necessary, results

measured within 10-20 K from 298.15 K were recalculated to this temperature using the

approximation that ∆ hH
o  is constant. Results based on the mutual solubility studies are given in

italics. Values considered unreliable are given in parentheses and were excluded from

consideration.

  The enthalpy and heat capacity of hydration, and partial molar volume at 298.15 K, 0.1 MPa.

Calorimetric values of the standard enthalpy of solution of a pure liquid ketone in water, ∆s H
o ,

were converted to ∆ hH
o  by means of ∆ hH

o = ∆sH
o − ∆ vapH

o , where ∆ vapH
o  stands for the

standard enthalpy of vaporization of a pure compound. Results are presented in Table 2.

       Published values of the infinite dilution partial molar heat capacity of aqueous solutes, Cp2
o ,

were used to calculate ∆ hCpo  as follows: ∆ hCpo = Cp2
o − Cp(ig), where Cp(ig) represents the heat

capacity of a compound in the ideal gas state. Results are given in Table 3.



       Literature values of the infinite dilution partial molar volumes of ketones in water are

presented in Table 4.

Group contributions values

       The values of the thermodynamic functions of hydration of ketones at 298.15 K and 0.1 MPa

were combined with those for aliphatic non-cyclic hydrocarbons and monohydric alcohols, which

were presented elsewhere (Plyasunov and Shock5). The first order group additivity scheme, in

which the properties of a group are assumed to be independent of the group’s neighbors, was

chosen to treat the data. The following groups are necessary to represent the selected compounds:

CH3, CH2, CH, C, OH and CO. Assuming the properties of the groups are additive, any

thermodynamic property of interest, Y, can be estimated from Y = Yo + niYi
i
� , where ni stands

for the number of times the i-th group is present in the compound, Yi designates the contribution

to the Y property of the i-th group, Yo represents the values of thermodynamic functions of

hydration of a material point, i.e. an imaginable compound without any groups at all. Values of Yo

can be calculated independently using the thermophysical properties of water (Pierotti6, for details

see Plyasunov and Shock5). The numerical values of the group contributions given in Table 5

were derived by a weighted least-square fit of the selected data set. In general, our results are very

close to the values obtained by Cabani et al.4 based on the data set available more than twenty

years ago.
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Table 1. Values of the Gibbs energy of hydration of ketones at 298.15 K, 0.1 MPa (see text for details)

Compound Formula ∆ vapG
o /

kJ⋅mol-1
                           ∆ hG

o /
                        kJ⋅mol-1

Accepted
   value

    Group
contribution
     value

    ∆ /
kJ⋅mol-1

Acetone C3H6O  2.98a -7.89b, -8.21c, -8.14d, -8.59e, -8.01f, -8.79g,
-8.02h, -8.02i, -7.93j, -7.94k, -8.00l, -8.22m,
-8.29n, -8.43o

-8.18±0.30    -7.48   -0.70

2-Butanone C4H8O  5.28a (-8.75)b, -7.18p, -7.01f, -7.40g, (-5.06)q, -7.11r,
-6.97s, -6.97t, (-5.87)i, -6.99j, -7.28u, -7.41v,
-7.13k, -7.58l

-7.18±0.30     -6.76   -0.42

2-Pentanone C5H10O  7.60a -6.12w, -6.34x, -6.19y, -6.09f, -6.17z, -6.14j,
-6.42u, -6.52v, -6.21aa, -6.80l, -5.96bb

-6.27±0.40     -6.05   -0.22

3-Pentanone C5H10O  7.59a -5.82y, -5.83f, -5.81j, -6.76v, -5.81aa -6.01±0.40     -6.05    0.04

3-Methyl-2-
    butanone

C5H10O  6.63a -5.42y, -5.61cc, -5.56z, -5.29aa -5.47±0.30     -5.60    0.13

2-Hexanone C6H12O 10.35dd -5.67y, -5.64j, -5.48u, -5.67v, -5.87aa -5.67±0.30     -5.34   -0.33

3-Hexanone C6H12O  9.92dd (0.63)ee, -4.95j, -5.14aa -5.01±0.30     -5.34    0.33

4-Methyl-2-
   pentanone

C6H12O  9.11dd -4.64ff, -4.81y, (-2.33)q, -4.74v, -4.91aa -4.78±0.30     -4.88    0.10

2-Methyl-3-
   pentanone

C6H12O  8.80dd -4.12aa -4.12±0.60     -4.88    0.76



3-Methyl-2-
   pentanone

C6H12O  9.24dd -5.28aa -5.28±0.60     -4.88   -0.40

3,3-Dimethyl-
   2-butanone

C6H12O  7.83dd -3.68y, -3.83u, -3.63aa -3.71±0.40     -4.64    0.93

2-Heptanone C7H14O 13.04gg -4.38w, -4.83y, -4.81u, -5.45v,-5.02aa, -4.77l -4.88±0.40     -4.63   -0.26

4-Heptanone C7H14O 12.54dd -4.50y -4.50±0.60     -4.63    0.13

2,4-Dimethyl-
  3-pentanone

C7H14O  9.79dd -1.89y, -2.37aa -2.13±0.50     -3.72    1.59

2-Octanone C8H16O 15.84gg -4.70y, -4.28hh,-4.11l -4.36±0.40     -3.91   -0.45

2-Nonanone C9H18O 18.46gg -3.53kk, -3.76y, -2.45l -3.25±0.50     -3.20   -0.05

2,6-Dimethyl-
  4-heptanone

C9H18O 15.07dd -0.73y -0.73±1.00     -2.29    1.56

2-Undecanone C11H22O 24.28dd -1.09l, -2.1l -1.6±0.6     -1.78    0.18

a Reid et al.7 ; b Iraci et al.12; c Benkelberg et al.; d Hoff et al.14; e Betterton15; f Landau et al.16; g Zhou and Mopper17; h Lichtenbelt

and Schram18; i Snider and Dawson19; j Mash and Pemberton20; k Vitenberg et al.21; l Buttery et al.22; m Burnett23; n Burnett and

Swoboda24; o Butler and Ramchandani25; p Wong et al.11; q Ashworth et al.26; r Park et al.27; s Sorrentino et al.28; t Richon et al.29; u

Aarna et al.30; v Sato and Nakajima31; w Shiu and Mackay32; x Arce et al.33; y Stephenson34; z Ferino et al.35; aa Sørensen and Arlt
36; bb Nelson and Hoff37; cc Correa et al.38; dd Stephenson and Malanowski39; ee Dewulf et al.40; ff Feki et al.41; gg Guetachew et al.42;
kk Tewari et al. 43; kk Li and Carr44.



Table 2. Values of the enthalpy of hydration of ketones at 298.15 K, 0.1 MPa

Compound Formula ∆ vapH
o /

kJ⋅mol-1
              ∆ hH

o /
             kJ⋅mol-1

 Accepted
   value

   Group
contribution
   value

   ∆ /
kJ⋅mol-1

Acetone C3H6O 31.27a  -41.70b, -41.57c, -41.44d,
 -41.44e, -41.24f,  -41.48g,
 -41.18h

-41.5±0.3   -40.65  -0.85

2-Butanone C4H8O 34.92a  -45.64e, -45.42i -45.5±0.5     -44.37  -1.13

2-Pentanone C5H10O 38.46a  -48.67e, -49.98j -49.0±0.5     -48.11  -0.89

3-Pentanone C5H10O 38.68a  -49.58e, -49.56j -49.6±0.5     -48.11  -1.49

3-Methyl-2-
   butanone

C5H10O 36.87a  -47.50e -47.6±1.0     -48.26   0.66

2-Hexanone C6H12O 43.15a  -52.61e -52.6±1.0     -51.86  -0.74

4-Methyl-2-
  pentanone

C6H12O 40.65a   -50.15e -50.2±1.0     -52.00   1.80

3,3-Dimethyl-
  2-butanone

C6H12O 38.00a  -47.50e -47.5±1.0     -51.34   3.84

2-Heptanone C7H14O 47.24a  -56.19e, -56.86j -56.4±0.6     -55.60  -0.80

4-Heptanone C7H14O 47.2k  -58.1j -58.1±2.0     -55.60  -2.50

2,4-Dimethyl-
  3-pentanone

C7H14O 41.57a  -51.2e, -57.1j -54.0±3.0     -55.88   1.88

2-Nonanone C9H18O 56.44a  -62.7j -62.7±2.0     -63.08   0.38

a Majer and Svoboda45; b Pfeffer et al.46; c Dohnal et al.47; d French48; e Della Gatta et al.49; f Duer

and Bertrand50; g Arnett et al.51; h Arnett and McKelvey52; i Hanson and Winkle53; j Bury et al.54; k

Stephenson and Malanowski39.



Table 3. Values of the heat capacity of hydration of ketones at 298.15 K, 0.1 MPa

Compound Formula    Cpig /
J·K-1·mol-1

   ∆ hCpo /
J⋅K-1⋅mol-1

Accepted
    value

   Group
contribution
    value

      ∆ /
J⋅K-1⋅mol-1

Acetone C3H6O   74.5a 150b, 166c 158±10      163       -5

2-Butanone C4H8O  103.3a 234d; 233e 234±5      230         4

3-Pentanone C5H10O  129.9a 298e 298±10      297         1

a Frenkel et al.3; b Tasker et al.55; c Desnoyers et al.56; d Hovorka et al.57; e Roux et al.58



Table 4. Values of V2
o  of ketones in water at 298.15 K, 0.1 MPa

Compound Formula            V2
o /

         cm3⋅mol-1
Accepted
   value

    Group
contribution
     value

    ∆ /
cm3⋅mol-1

Acetone C3H6O 66.92a, 66.8b, 66.92c,
67.0d

66.9±0.3      66.80    0.10

2-Butanone C4H8O 82.44e, 82.56f, 82.52g,
82.9b, 82.5d

82.5±0.3      82.51   -0.01

2-Pentanone C5H10O 98.0b 98.0±2.0      98.21   -0.21

3-Pentanone C5H10O 98.08g 98.1±1.0      98.21   -0.11

3-Methyl-2-
   butanone

C5H10O 95.0b 95.0±2.0      98.41   -3.41

a Tasker et al.59; b Edward et al.60; c Kiyohara et al.61; d Boje and Hvidt62; e
 Hovorka et al.57; f

Davies et al.63; g Roux et al.58



Table 5. Numerical values of the group contributions to each thermodynamic

functions of hydration at 298.15 K, 0.1 MPa together with their uncertainties at the

0.95 confidence level. The number of compounds containing the selected groups for

each of the properties is given in parentheses

Group        ∆ hG
o /

       kJ⋅mol-1
        ∆ hH

o /
        kJ⋅mol-1

     ∆ hCpo /
J⋅K-1⋅mol-1

       V2
o /

  cm3⋅mol-1

 CH3   3.62±0.15 (79)  -7.55±0.58 (40) 128±5  (26) 25.46±0.89 (30)

 CH2   0.71±0.07 (66)  -3.74±0.29 (29)  67±2  (19) 15.70±0.15 (22)

 CH  -1.74±0.30 (43)  -0.08±1.44 (13)   9±11  (6)  6.15±0.98 (12)

 C  -4.41±0.54 (12)   4.39±2.30  (4) -42±15  (4) -3.46±1.85  (4)

 OH -25.34±0.23 (32) -40.47±1.09 (16)   1±7  (16) 12.63±0.97 (20)

 CO -22.68±0.31 (18) -23.24±1.25 (12) -93±11  (3) 14.76±1.82  (5)

 Yo          7.96       -2.29         0        1.12


